Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.

نویسندگان

  • Razim Samy
  • Tomasz Glawdel
  • Carolyn L Ren
چکیده

A novel method is presented for on-chip temperature measurements using a poly(dimethylsiloxane) (PDMS) thin film dissolved with Rhodamine B dye. This thin film is sandwiched between two glass substrates (one of which is 150 microm thick) and bonded to a microchannel molded in a PDMS substrate. Whole-chip (liquid and substrate) temperature measurements can be obtained via fluorescent intensity visualization. For verification purposes, the thin film was tested with a tapered microchannel subjected to Joule heating, with resulting axial temperature gradients comparing well with numerical simulations. Errors induced by the definite film thickness are discussed and accounted for during experimental and analytical analysis. Alternative validation using the traditional in-channel Rhodamine B injection method was also attempted. The thin film has several advantages over traditional methods. First, false intensity readings due to adsorption and absorption of Rhodamine B into PDMS channels are eliminated. Second, whole-chip temperature measurements are possible. Third, separation of working liquid from Rhodamine B dye prevents possible electrophoresis effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems.

Joule heating is a significant problem in electrokinetically driven microfluidic chips, particularly polymeric systems where low thermal conductivities amplify the difficulty in rejecting this internally generated heat. In this work, a combined experimental (using a microscale thermometry technique) and numerical (using a 3D "whole-chip" finite element model) approach is used to examine Joule h...

متن کامل

Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.

We present a novel and simple method for patterning oxygen-sensitive polystyrene thin films and demonstrate its potential for integration with microfluidic lab-on-a-chip devices. Optical oxygen sensing films composed of polystyrene with an embedded luminescent oxygen-sensitive dye present a convenient option for the measurement of oxygen levels in microfluidic and lab-on-a-chip devices; however...

متن کامل

Design considerations for electrostatic microvalves with applications in poly(dimethylsiloxane)-based microfluidics.

Microvalves are critical in the operation of integrated microfluidic chips for a wide range of applications. In this paper, we present an analytical model to guide the design of electrostatic microvalves that can be integrated into microfluidic chips using standard fabrication processes and can reliably operate at low actuation potentials (<250 V). Based on the analytical model, we identify des...

متن کامل

Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents.

This paper describes the use of poly(vinylmethylsiloxane) (PVMS) networks for fabricating microfluidic channels that resist swelling in the presence of organic solvents, thus providing a versatile alternative to poly(dimethylsiloxane) (PDMS). In particular, we demonstrate that in contrast to PDMS microchannels, the UV-treated PVMS structures exhibit high resistance to swelling by toluene.

متن کامل

A Simple Microfluidic Chip Design for Fundamental Bioseparation

A microchip pressure-driven liquid chromatographic system with a packed column has been designed and fabricated by using poly(dimethylsiloxane) (PDMS). The liquid chromatographic column was packed with mesoporous silica beads of Ia3d space group. Separation of dyes and biopolymers was carried out to verify the performance of the chip. A mixture of dyes (fluorescein and rhodamine B) and a biopol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 2  شماره 

صفحات  -

تاریخ انتشار 2008